
The Manager
and Scrum

goodagile>

	 1	

Important Note

A	thorough	understanding	of	the	principles	and	practices	of	Scrum	is	
recommended	prior	reading	this	guide.	We	recommend	The	Scrum	
Guide,	available	for	free	at	www.scrumguides.org.	
	

About the Author
Pete	Deemer	is	a	well-known	figure	in	the	Agile	software	community,	
and	has	spent	the	last	25+	years	leading	teams	building	products	and	
services	at	global	companies.	Pete	served	on	the	Board	of	Directors	of	
Scrum	Alliance	from	2012-2017,	and	as	Chairman	in	2016.	
	
Pete	is	the	lead	author	of	The	Scrum	Primer,	one	of	the	most	widely	
read	introductions	to	Agile	development,	as	well	as	The	Distributed	
Scrum	Primer,	a	guide	to	multi-location	Scrum.	
	
Pete	was	VP	of	Product	Development	at	Yahoo!	in	the	early-mid	
2000's,	and	prior	to	that	served	as	SVP	of	c|net	Networks.	Pete	was	the	
co-founder	of	GameSpot,	which	is	now	part	of	CBS	Interactive.	
	
Pete	is	an	honors	graduate	of	Harvard	University,	and	studied	
computer	science	at	Stanford	University.	He	spent	a	number	of	years	
as	adjunct	faculty	at	University	of	California	Berkeley,	most	recently	at	
the	Haas	School	of	Business,	where	he	received	the	prestigious	Club	6	
teaching	award.	Pete	has	been	a	visiting	lecturer	at	the	Institute	of	
Systems	Science	at	the	National	University	of	Singapore	since	2010.	
	
Pete	divides	his	time	between	India,	Singapore,	and	Sri	Lanka,	and	
works	with	teams	globally.

	 2	

When	an	organization	starts	to	explore	Scrum,	there’s	often	an	
uncomfortable	moment	early	on	when	someone	points	out	that	the	
role	of	“manager”	seems	to	be	missing	entirely.		“Well	I	guess	we’ll	
have	to	just	get	rid	of	‘em	all!”	wisecracks	one	of	the	developers,	and	all	
the	managers	in	the	room	shift	uncomfortably	in	their	seats.	

The	Scrum	Team	consists	of	a	Product	Owner,	a	Development	Team,	
and	a	ScrumMaster	–	and	the	basic	direction	given	to	others	in	the	
organization	is	to	“support	the	Scrum	Team,	or	get	out	of	the	way”.		
This	is	not	very	detailed	advice,	especially	if	you’re	a	manager	
expected	by	senior	management	to	ensure	that	everything	goes	well.	

The	traditional	role	of	the	manager	in	the	corporate	world	is	based	on	
a	model	known	as	“command	and	control”.	Here,	the	job	of	the	
manager	is	to	identify	what	needs	to	be	done,	to	issue	detailed	
instructions	to	the	employees,	and	then	to	ensure	the	employees	
complete	the	work	according	to	the	instructions.	The	role	of	employees	
in	this	model	is	simply	to	follow	the	directions	as	given,	trusting	the	
judgment	and	wisdom	of	the	manager	to	ensure	that	the	right	work	is	
being	done	in	the	right	way.	

In	complex,	dynamic	environments	such	as	software	development,	this	
approach	can	often	be	a	major	impediment.	First,	it	is	difficult	and	
time-consuming	for	a	manager	to	understand	every	requirement	in	full	
detail	and	issue	precise	instructions	to	guide	the	work	of	every	
employee.	Within	a	software	development	team,	the	work	is	highly	
complex	and	interconnected,	with	constant	discovery	and	course-
correction.	To	expect	a	manager	to	“pre-think”	this	for	his	or	her	team	
is	unrealistic,	and	often	limits	the	team’s	productivity	to	the	manager’s	
ability	to	give	instructions.	In	addition,	this	approach	tends	to	be	
demotivating	for	employees;	their	role	is	simply	that	of	“order	
follower”,	and	they	feel	a	limited	sense	of	ownership.	Accountability	
consists	of	simply	answering	the	question,	“did	I	complete	the	orders	I	
was	given?”	If	the	answer	is	“yes”,	the	job	has	been	done	–	regardless	
of	whether	the	right	thing	was	built,	built	well,	or	built	to	satisfy	the	
goals	of	the	customer.	

Scrum	is	based	on	a	different	approach:	The	Self-Organizing	
Development	Team,	a	group	of	skilled	professionals	that	work	together	

	 3	

to	produce	potentially	releasable	increments	of	the	Product	in	each	
Sprint.	

Self-organization	begins	with	the	Development	Team	deciding	how	
much	Product	Backlog	to	set	as	their	goal	for	each	Sprint.		When	
Development	Teams	are	empowered	to	decide	how	much	is	realistic	
and	achievable,	their	sense	of	ownership,	commitment,	and	motivation	
tends	to	be	higher,	and	as	a	result	they	produce	better	results.		Often,	
when	managers	first	learn	of	this	practice	in	Scrum,	they	voice	the	
concern,	“What	if	the	Development	Team	under-commits?”	This	is	not	
typically	a	problem,	since	the	process	of	deciding	the	goal	is	very	
transparent	and	open.	Indeed,	it’s	much	more	common	in	the	early	
Sprints	for	Development	Teams	to	significantly	overcommit;	most	
Development	Teams	have	very	little	experience	doing	their	own	
estimation,	and	it	takes	a	number	of	Sprints	before	their	optimism	is	
tempered	by	experience.	Moreover,	in	the	event	the	Development	
Team	does	under-target,	they	can	always	pull	additional	items	from	the	
Product	Backlog	into	the	Sprint;	no	harm,	no	foul.	

Development Team Tango had just completed Sprint Planning
for a two-week Sprint. They brought in their manager, Jason,
and walked him through the portion of the Product Backlog
they’d set as their goal for the Sprint.

Finally, they asked Jason, “Does this seem like a realistic
amount to target?”

Jason turned the question around to the Development Team:

“Do you truly believe you can finish this work, at high quality, by
the end of the Sprint? Do you really feel committed?”

The Development Team members all nodded, looking quite
convinced.

“Then it’s the right amount for you to target.” Jason replied. “And
if it turns out to be too much or too little, you’ll know two weeks
from now, and you’ll have learned something you can apply in
the following Sprint”.

	 4	

The	next	aspect	of	self-organization	happens	during	the	Sprint,	when	
the	Development	Team	works	together	to	decide	what	each	person	
needs	to	do	to	achieve	the	goal.	When	the	Development	Team	is	
responsible	for	this	decision-making,	they	remain	focused	on	the	fact	
that	they	own	the	goal	–	and	if	the	goal	is	to	be	achieved,	they	are	the	
ones	who	must	do	it.	When	someone	outside	the	Development	Team	is	
steps	in	and	overrides	this	decision-making	–	for	example,	a	manager	–	
the	Development	Team	receives	a	subtle	but	real	signal	that	they	are	
not	actually	responsible:	it’s	the	manager’s	job	to	worry	about	how	to	
achieve	the	goal,	not	the	Development	Team’s.	This	does	not	mean	that	
managers	are	not	providing	support	during	the	Sprint	–	on	the	
contrary	–	but	managers	are	careful	not	to	interfere	in	a	way	that	
would	reduce	the	Development	Team’s	sense	of	ownership	of	the	goal,	
or	responsibility	for	organizing	themselves	during	the	Sprint.	

On the first day of their first Sprint, the Development Team
called their manager Sanjay over to join them for their Daily
Scrum. Sanjay, wanting to be helpful, agreed to the request. He
stood just outside the circle as the Development Team gave
their updates to each other. Sanjay noticed that people seemed
to be emphasizing how much they got done the day before, and
weren’t spending very much time reporting the impediments they
were hitting. And after each person gave their short update, they
looked over to Sanjay expectantly, hoping to catch a glance of
approval. By the end of the Daily Scrum, Sanjay noticed that the
entire circle of people had shifted, so they were now facing him.

After the last update was given, a Development Team member
raised his hand, and asked “Sanjay, do you have any feedback
or guidance for us?”

Sanjay knew that he had to say something.

“You know, I’m actually a little concerned. I feel like this Daily
Scrum was for my benefit. I feel like you’re still looking to me to
make sure everyone’s doing the right thing. Here’s the deal: I’ll
give you any help you need, at any point in the Sprint. If you hit
an impediment and you’re not able to resolve it, I’m here to
provide any assistance I can. But at the end of the day, you are
responsible for doing what’s necessary to meet the goal you’ve

	 5	

set. So from now on, I’m not going to join this meeting. This is
your meeting to organize yourselves, to achieve the goal you’ve
set. If I’m here, I’m afraid I’m just going to undermine that.”

The Development Team was silent. Then Victor, a member of
the team, spoke up.

“So let me get this straight. We are the ones responsible here?
We really do own this…?”

A subtle jolt of realization passed through the Development
Team, and at that moment, they took their first step towards truly
becoming a self-organizing team.

One	of	the	biggest	challenges	in	making	the	shift	from	a	“following	
orders”	mindset	to	self-organization	is:	The	Development	Team	will	
not	begin	to	self-organize	until	everyone	outside	the	Development	
Team	stops	directing	their	day-to-day	work.	Development	Teams	are	
so	conditioned	to	follow	orders	that	they	will	often	not	begin	to	self-
organize	until	there	are	no	orders	available	to	follow.	This	requires	a	
leap	of	faith	for	the	manager,	and	it	can	be	scary.	This	is	not	to	say	that	
the	manager	abandons	the	Development	Team	–	rather,	the	manager	
needs	change	their	style	of	interaction,	and	constantly	signal	to	the	
Development	Team	that	they	are	now	the	ones	with	ownership	and	
responsibility.	

Eileen was an Engineering Manager at RedAlpha Systems,
working with a Team of 7 relatively junior developers. During
their first Sprint Planning Meeting, she sat at the back of the
room working on email, as the Development Team completed
the task breakdown for a big feature at the top of the Product
Backlog.

When they finished, they turned to Eileen and said “How does
this look to you?”

Eileen could see immediately that the Development Team had
overlooked several important database tasks necessary to
implement the feature. It would be very simple for her to simply

	 6	

 point out the tasks they’d overlooked, and the problem would be
solved. Or would it?

Eileen decided to try a different approach. She stood up and
announced, “Folks, this is a good start, but you’re not quite

done. There are a couple important tasks that you’ve
overlooked. But I’m not going to tell you what they are. I will give
you a hint: Think more carefully about the user session data.
Now I’m going to go and refill my coffee, and I’ll be back in about
5 minutes. See if you can figure it out before I get back.”

And at that, Eileen strode out of the room.

The Development Team looked at each other, slightly
bewildered. Eileen had always been quick to point out what
they’d missed; they depended on her for that. But this time, she
was making them figure it out.

They stood in silence for a moment at the whiteboard, then
slowly discussion began. They went through task by task,
looking at each from different angles. Then, after a few minutes
of discussion, Tony spoke up.

“Wait a minute… where are we going to store the user session
data? We’re going to have to make some changes to the
database for that, right?”

There was a round of forehead slaps from the other team-
members.

“Of course! How did we miss that!” several people murmured.
There was a chuckle of embarrassment, and Sam started writing
yellow Post-It Notes for each of these new tasks and putting
them on the white-board. A few minutes later, Eileen returned
with her cup of coffee. She looked at the white board, and
nodded in agreement.

“Good job. Now why don’t you all continue with planning your
Sprint… I’ve got a bunch more emails I need to get through!”

	 7	

In	this	example,	it	would	have	been	faster	and	easier	for	Eileen	simply	
to	tell	the	Development	Team	what	to	do.	But	had	she	done	that,	she	
would	have	encouraged	them	to	wait	for	solutions	from	her,	and	not	
think	for	themselves.	Instead,	Eileen	did	something	harder,	but	
ultimately	much	more	valuable:	She	placed	the	responsibility	on	the	
shoulders	of	the	Development	Team	to	figure	out	what	they	had	
forgotten,	and	provided	the	least	amount	of	help	necessary	to	enable	
them	to	get	it	done.	Had	Eileen	returned	to	find	the	Development	Team	
still	struggling,	she	could	have	provided	another	hint	or	asked	another	
probing	question,	and	continued	to	do	so	until	the	Development	Team	
finally	figured	out	the	missing	tasks.		Eileen	could	even	have	let	the	
Development	Team	proceed,	and	discover	their	oversight	during	the	
Sprint;	mistakes	often	produce	the	most	powerful	learning	
experiences.	

In	simplest	terms,	the	manager	in	Scrum	is	less	of	a	“nanny”	for	the	
Team	and	more	of	a	mentor	or	“guru”,	helping	them	learn,	grow	and	
perform.	

In	order	for	managers	to	be	effective	in	this	new	mode,	the	
organization	must	redefine	the	role	and	expectations	of	the	manager.	
For	example,	in	Scrum,	the	Development	Team	is	responsible	for	
organizing	themselves	to	achieve	the	goal	in	the	Sprint,	and	for	this	to	
work,	it	must	be	clear	to	all	that	the	manager	is	not	responsible	for	
this.	Similarly,	in	Scrum,	it	is	the	Product	Owner’s	responsibility	to	
decide	the	tradeoffs	between	scope,	schedule,	cost	and	quality	to	
achieve	the	business	goals	of	the	release,	not	the	responsibility	of	
engineering	management,	and	the	organization	needs	to	make	this	
clear	to	everyone.	Problems	occur	when	the	organization	“talks	the	
talk”	on	the	new	role	of	the	manager,	but	does	not	“walk	the	walk”	
when	things	get	difficult.	

The Galaxy Team had been doing Scrum for several months,
and the Development Team was well on its way to being truly
self-organizing. Their motivation was high, they were focused,
and after a few Sprints of not quite achieving their Sprint goal,
they now had a good pattern of setting realistic Sprint goals and
achieving them. Morale was high, and there was a real sense of

	 8	

“flow” in the work they were doing. The engineering manager

Francis had come a long way – once a habitual micromanager,
he was now acting like much more of a mentor and coach for the
Development Team. Unfortunately, though, in the eighth Sprint,
the Development Team encountered some unexpected
difficulties, and about halfway through the Sprint, they were
significantly behind in their progress. The VP of the group,
Simon, had ventured into the Development Team’s work area to
see their Sprint Burndown Chart, and called Francis to his office.

“Francis, it looks like this Sprint is a disaster. What’s going on?”
he asked.

Francis responded, “Well, the Development Team hit some
bumps along the way, and they’re trying hard to get everything
done that they committed to, but it’s a bit touch-and-go right
now.”

Simon grimaced.

“Francis, this project is critical, and we can’t let it fall behind. I’m
counting on you to make sure the Development Team hits their
Sprint goal, this Sprint and every Sprint. As a manager, your job
is to make sure the Development Team gets it done; if things are
going well, then you can back off a bit, but the minute the going
gets tough, I want you in there making sure that no time is being
wasted, and everyone is doing exactly what needs to be done.”

Francis was exasperated. Simon had been too busy to attend
the in-house Scrum trainings, but Francis had emailed him a
Powerpoint presentation about self-organizing teams and the
new role of the manager, and Simon hadn’t voiced any
disagreement. Francis spoke up:

“But what about the self-organization, Simon? What about our
shift away from micromanagement?”

There was a glimmer of recognition, as Simon recalled a
Powerpoint he’d seen a few months before.

“Yes, the Team is responsible, but when they start to fail, I hold
you responsible. We want maximum accountability, so I’m
holding them accountable and I’m holding you accountable. In

	 9	

our department, everyone is accountable! Now make it happen.”

At that, Simon spun his chair around and started typing. Francis
took the hint and left the office.

The next day, Francis showed up at the Daily Scrum.

“Folks, we’re going to do a different format for the meeting today.
Due to the criticality of this project, Simon has instructed me to
more actively… uhhh… ‘facilitate’ your self-organization during
the Sprint. So what I’d like to do this morning is get a status
update on each of the features you’ve committed to – whose
done what so far, and what’s left to be done – and I’m going to
be giving some more detailed feedback so hopefully we can get
everything 100% finished by the end of next week.”

The Development Team looked at each other. Philip, the
ScrumMaster, spoke up.

“Francis… uhhh… does this mean that the Development Team
is no longer responsible for organizing itself?”

Several team members nodded in agreement.

Francis replied, “Look, we’re all responsible. You’re responsible
for organizing yourselves, and I’m responsible for making sure
you get everything done. We’re all responsible together!” Francis
didn’t see the sideways glances.

As the Sprint proceeded, Francis was more and more involved.
The Daily Scrum became an update meeting for the
Development Team to tell Francis what they’d been able to
complete, and for him to assign them the next day’s tasks. The
mood of the Development Team shifted; motivation seemed to
go down, and Development Team members seemed to be
reverting to their previous mode, what they used to sarcastically
call “servants-of-Francis-the-Great”. By the end of the Sprint, the
Development Team was fully back into “order-following” mode,
and Francis was directing their efforts task-by-task.

At the Sprint Review, the Development Team was surprised
when Simon joined the meeting just as it was starting.

	 10	

“So…” Simon announced, “Did you deliver everything?”

The Development Team looked at each other. Francis
answered.

“Simon, unfortunately there are a couple Product Backlog items
that weren’t finished.”

There was a flash of anger in Simon’s eyes.

“How did this happen? Who is responsible for this?”

The Development Team was silent, but their heads all turned
slowly to Francis.

Simon continued. “Francis, I told you to get it done. Next Sprint, I
don’t want to see this happen again. If it does, there will be hell
to pay…”

Upon hearing this, everyone on the Development Team made a
mental note to think very carefully about just how much to
commit to in the next Sprint. The last thing they wanted was to
get shouted at again two weeks from now.

As the Sprints passed, Francis became more and more involved
in directing the Development Team at every stage of their work.
Gone was any semblance of self-organization, and with it
disappeared the improved motivation, drive, and focus that the
Development Team had started to display. Morale had
plummeted, and so too had productivity. Lunch breaks were
getting longer, coffee-breaks more frequent, and Francis felt like
he was spending more and more of his time just making sure
people were at their desks working. Those amazing few Sprints,
when the Development Team was truly self-organizing, and
performing at the level they were really capable of, were
becoming more and more of a distant memory. The return to
micromanagement was made all the worse because they’d had
a taste of the self-organization “good life”.

	 11	

There	were	errors	of	judgment	at	every	step	of	this	situation.	The	
ScrumMaster	didn’t	protect	the	Development	Team	from	Francis’	
micromanagement,	or	call	Francis	out	on	the	“double-talk”.	Francis	
didn’t	make	any	effort	to	reason	with	Simon,	or	help	him	see	the	
consequences	of	his	actions.	But	perhaps	the	biggest	mistake	was	an	
early	mistake:	Simon	was	never	properly	educated	about	the	shift	in	
the	management	model	that	Scrum	requires	to	be	successful,	and	how	
this	applies	not	only	in	good	times	but	also	when	the	going	gets	tough;	
and	this	shift	was	never	made	“official”	in	the	form	of	a	change	to	
Francis’s	job	description.	And	as	a	result,	a	successful,	high-
performance	Development	Team	rapidly	deteriorated	back	to	its	
previous	under-performing	state.	

The	above	scenario	is	extremely	common	and	is	a	frequent	point	of	
failure	for	Scrum	transitions.	Furthermore,	in	an	organization	where	
this	scenario	plays	out,	word	spreads	very	quickly,	often	causing	other	
managers	to	proactively	return	to	micro-management	as	a	self-
protective	measure.	So	how	does	one	prevent	this	kind	of	failure	from	
occurring?	

First,	one	has	to	make	a	clear-eyed	assessment	of	management’s	
willingness	and	ability	to	change,	at	every	level.	If	there	exists	a	
fundamental	belief	in	the	effectiveness	of	the	“command	and	control”	
approach	within	the	management	and	executive	ranks,	and	a	heavy	
dependence	on	intimidation,	threats,	or	shaming	as	a	management	
tool,	it	is	going	to	be	particularly	difficult	to	make	the	transition	to	a	
new	way	of	working.	As	a	result,	an	adoption	of	Scrum	risks	being	
incomplete	and	dysfunctional,	producing	little	if	any	improvement	for	
the	organization.	

However,	if	there	is	an	openness	to	change,	and	a	recognition	that	the	
existing	command	and	control	habits	may	not	be	the	most	effective	
approach,	then	there	needs	to	be	education	and	coaching	at	every	level	
of	management;	in	practice,	this	means	Scrum	training	for	all	
managers,	up	to	senior	leaders	in	the	organization.	

The	final	necessary	step	for	completing	this	redefinition	of	the	role	of	
the	manager	is	to	“make	it	official”	within	the	organization.	One	option	
is	to	use	the	pre-written	job	description	included	below	as	guide.	The	
other	option	is	to	complete	the	interactive	exercise	that	follows	with	

	 12	

managers	in	the	organization,	to	break	down	their	existing	job	
descriptions	and	rebuild	them	to	be	compatible	with	Scrum	values	and	
practices.	With	either	of	these	approaches,	it	is	critical	to	get	formal	
approval	of	the	manager’s	new	job	description	from	his	or	her	manager	
(for	example,	the	Engineering	Director,	or	department	head).	Without	
a	clear,	“official”	approval	from	senior	management,	the	manager’s	
new	role	will	be	more	difficult	to	protect	when	difficulties	arise.		

THE MANAGER AS SCRUMMASTER

One	approach	to	redefining	the	role	of	the	manager	is	to	convert	them	
into	ScrumMasters,	but	this	has	a	poor	track	record	of	success.	When	
the	manager	plays	the	role	of	ScrumMaster,	it	will	be	much	harder	for	
the	Development	Team	to	begin	to	self-organize.		The	pre-existing	
patterns	of	“order-giver”	and	“order-follower”	are	very	difficult	to	
break,	and	what’s	likely	to	happen	instead	is	that	command-and-
control	will	be	transplanted	into	the	heart	of	the	Scrum	practices.		As	a	
result,	the	benefits	that	flow	from	a	self-organizing	Development	Team	
–	ownership,	focus,	drive,	pride	in	quality,	improved	morale,	and	better	
productivity	–	will	not	be	achieved.		It	would	often	be	better	to	have	a	
member	of	Development	Team	play	the	role	of	ScrumMaster,	even	if	
they	do	this	in	parallel	with	development	responsibilities.	

	 13	

HANDS-ON: REDEFINING THE MANAGER’S ROLE

Step	1.	Ask	the	manager	to	write	down	all	of	their	current	job	
responsibilities	on	Post-It	Notes.	The	manager	should	try	to	include	
both	official	and	unofficial	responsibilities,	and	things	they	should	have	
been	doing	but	haven’t	had	time	to	do.	Here’s	a	sample	list:	

Decide	what	
work	needs	
to	be	done	

	
Assign	the	
work	to	team	
members	

	

Keep	track	of	
what	

everyone	on	
the	team	is	
doing	

	

Make	sure	
the	team	gets	
their	work	
done	

	

Give	input	on	
what	

functionality	
the	team	

should	build	

	 	 	 	 	 	 	 	 	

Give	input	on	
how	to	make	
features	
better	

	

Help	remove	
impediments
that	the	team	
is	not	able	to	
resolve	by	
themselves	

	

Make	
commitments	
to	mgt	about	
how	much	

team	can	do	by	
a	certain	date	

	

Be	responsible	
for	the	team	
meeting	the	
commitments	
made	to	

management	

	

Provide	advice	
and	input	to	
the	team	on	
technical	

difficulties	that	
come	up	

	 	 	 	 	 	 	 	 	

Do	weekly	
team	staff	
meeting	

	

Do	weekly	
status	
update	
report	for	

management	

	

Have	regular	
1:1	meetings	
with	team	to	
provide	

coaching	and	
mentoring	

	

Plan	training	
and	other	
skills	

development	
for	team	

	

Do	career-
development	
and	career	
planning	
with	team	

	 	 	 	 	 	 	 	 	

Recruit,	
interview	

and	hire	new	
team-

members	

	

Stay	up	to	
date	on	

advances	in	
tools	and	

technologies		

	

Stay	up	to	
date	on	
industry	
news	and	
develop-
ments	

	

Remove	
team-

members	
who	are	not	
able	to	

perform	well		

	

Plan	and	
manage	

budgets	and	
financials	

	
	

	 	 	 	 	 	 	 	

Anticipate	
tools,	skills	
and	other	
future	needs	

	

Do	
performance	
evaluations	
and	provide	
feedback	

	 	 	 	 	 	

	 14	

	
Step	2.	Draw	two	columns	on	the	whiteboard:	“Good	in	Scrum”	and	
“Conflicts	with	Scrum	/	Not	Needed	in	Scrum”.	Ask	the	manager	to	go	
through	the	Post-It	notes	one	by	one,	and	place	them	in	one	column	or	
the	other.	

Good	in	
Scrum	

Conflicts	with	Scrum	
or	

Not	Needed	in	Scrum	
	 	 	 	 	 	 	 	 	

Help	remove	
impediments	
that	the	team	is	
not	able	to	
resolve	by	
themselves	

1	 Provide	advice	
and	input	to	
the	team	on	
technical	
difficulties	that	
come	up	

2	

	
Decide	what	
work	needs	to	
be	done	

15	

Assign	the	work	
to	team	
members	

16	

	 	 	 	 	 	 	 	 	

Do	regular	1:1	
meetings	with	
team,	to	
provide	
coaching	and	
mentoring	

3	

Give	input	on	
how	to	make	
features	better	

4	

	

Keep	track	of	
what	everyone	
on	the	team	is	
doing	

17	

Make	sure	the	
team	gets	their	
work	done	

18	

	 	 	 	 	 	 	 	 	

Stay	abreast	of	
developments	
in	tools	and	
technologies	
team	is	using	

5	
Plan	training	
and	other	skills	
development	
for	team	

6	

	

Make	
commitments	
to	mgt	about	
how	much	team	
can	do	by	a	
certain	date	

19	 Be	responsible	
for	the	team	
meeting	the	
commitments	
I’ve	made	to	
management	

20	

	 	 	 	 	 	 	 	 	

Stay	up	to	date	
on	industry	
news	and	
developments	

7	
Anticipate	
tools,	skills	and	
other	future	
needs	

8	

	

Do	weekly	
status	update	
report	for	
management	

21	

Do	weekly	team	
staff	meeting	

22	

	

	 15	

	

Good	in	
Scrum	(cont’d)	

	

	

Plan	and	
manage	
budgets	and	
financials	

9	 Give	input	on	
what	features	
/	functionality	
the	team	
should	build	
(to	the	P.O.)	

10	

	 	

	

	

	

	 	 	 	 	 	 	 	 	

Do	
performance	
evals	and	
provide	
feedback	to	
team	

11	 Do	career-
development	
and	career	
planning	with	
team	
members	

12	

	 	

	

	

	

	 	 	 	 	 	 	 	 	

Recruit,	
interview	and	
hire	new	team	
members	

13	
Remove	team-
members	who	
are	not	able	to	
perform	well	

14	

	 	

	

	

	

	
Step	3.	Take	all	the	items	in	the	“Good	in	Scrum”	column,	and	turn	
them	into	a	new	job	description	for	the	manager.		

Step	4.	Ask	the	manager,	“Will	you	be	more	useful	or	less	useful	to	the	
organization	in	this	new	role?”	and	“Will	this	role	be	more	interesting	
or	less	interesting	for	you	to	do?”		In	most	cases,	the	immediate	
response	will	be	“more	useful”	and	“more	interesting”.	

Step	5.	Get	formal	approval	of	the	manager’s	new	job	description	from	
his	or	her	manager.	This	is	critically	important.	Without	formal	
agreement,	the	manager’s	new	role	will	not	be	“official”,	and	there	will	
be	an	even	greater	risk	of	falling	back	into	prior	patterns.	

	 16	

EXPLANATION

Good	in	Scrum	
1.	Help	remove	impediments	that	the	Development	Team	is	not	
able	to	resolve	by	themselves	
While	the	ScrumMaster	does	this	hour-to-hour	/	day-to-day,	managers	
will	need	to	focus	on	helping	remove	more	systemic	or	organization-
wide	impediments.		These	are	often	the	most	vexing	problems	in	the	
organization,	and	will	require	the	management’s	influence,	authority,	
or	spending	power	to	overcome.		In	The	Enterprise	and	Scrum,	Ken	
Schwaber	recommends	creating	an	enterprise	transition	team	of	
managers	and	executives,	who	are	responsible	for	evolving	the	
organization	based	on	a	backlog	of	impediments.	

2.	Provide	advice	and	input	to	the	Development	Team	on	
technical	difficulties	that	come	up	
Managers	should	be	available	to	give	advice	or	assistance	whenever	
the	Development	Team	asks	for	it.	

3.	Do	regular	1:1	meetings	with	Development	Team	members,	to	
provide	coaching	and	mentoring	
Managers	should	spend	1:1	time	with	team	members,	at	a	frequency	
that	feels	right.	This	is	not	a	task	update	meeting	–	this	is	time	for	
coaching	and	mentorship.	Some	managers	like	to	do	this	sitting	side-
by-side,	writing	code!	

4.	Give	input	on	how	to	make	features	better	
This	input	goes	directly	to	the	Product	Owner,	typically	during	the	
Sprint	Review.	

5.	Stay	abreast	of	developments	in	tools,	technologies,	and	
techniques	the	Development	Team	is	using	
A	very	important	and	often	neglected	activity.	Managers	are	can	
sometimes	be	“frozen	in	time”	at	the	technology	and	development	
practices	that	were	current	when	they	were	last	doing	actual	
development	themselves.	

	 17	

6.	Plan	training	and	other	skills	development	for	Development	
Team	members	
Managers	should	think	carefully	about	areas	where	the	Development	
Team’s	skills	could	use	development,	or	capabilities	the	Development	
Team	will	need	to	have	to	handle	upcoming	Product	Backlog	items.	

7.	Stay	up	to	date	on	industry	news	and	developments	
Again,	an	important	and	often	neglected	activity.	

8.	Anticipate	tools,	skills	and	other	future	needs	
Another	important	and	often	neglected	activity.	Be	sure	to	get	input	
from	the	Development	Team.	

9.	Plan	and	manage	budgets	and	financials	
Another	important	and	often	neglected	activity.	Be	sure	to	get	input	
from	the	Development	Team.	

10.	Give	input	on	what	features	and	functionality	the	
Development	Team	should	build	
This	input	goes	directly	to	the	Product	Owner.	

11.	Do	performance	evaluations	and	provide	feedback	to	
Development	Team	members.	
A	necessity	within	most	organizations	(despite	well-documented	flaws	
in	the	methodologies	typically	used).	Managers	should	base	their	
evaluations	on	their	own	observations	and	well	as	on	feedback	from	
the	employees’	fellow	Development	Team	members.	

12.	Do	career-development	and	career	planning	with	
Development	Team	members	
Career	opportunities	are	one	of	the	most	significant	valuable	forms	of	
compensation	people	receive	from	their	employer.	

13.	Recruit,	interview	and	hire	new	Development	Team	members	
Some	of	the	best	–	and	in	other	cases,	worst	–	management	actions	are	
hiring	decisions.	Great	hires	pay	dividends	every	single	day	they	are	
employed	–	and	poor	hires	are	an	invisible	daily	“tax”	on	the	
Development	Team’s	ability	to	deliver	business	value.		And	for	the	
record	–	the	Development	Team	itself	should	play	a	central	role	in	
selecting	new	members	of	the	team.	

	 18	

14.	Remove	team	members	who	are	not	able	to	perform	well	
within	the	Development	Team	
If	even	after	extensive	coaching	a	team	member	is	not	able	to	
contribute,	work	harmoniously	with	other	team	members,	or	perform	
at	the	level	required,	they	may	need	to	be	moved	off	the	Development	
Team,	or	out	of	the	organization.	Typically	managers	will	need	to	guide	
this	process,	in	coordination	with	HR.	

Conflicts	with	Scrum	or	Not	Needed	in	
Scrum	
15.	Decide	what	work	needs	to	be	done.		
The	Product	Owner	decides	the	features	and	functionality	that	needs	
to	be	built,	and	the	Development	Team	determines	what	tasks	are	
necessary	to	deliver	this.	

16.	Assign	the	work	to	Development	Team	members	
The	Development	Team	does	this	itself,	during	the	Sprint.	

17.	Keep	track	of	what	everyone	on	the	Development	Team	is	
doing	
The	Development	Team	does	this,	in	the	Daily	Scrum	and	on	the	Sprint	
Backlog.	

18.	Make	sure	the	Development	Team	gets	their	work	done	
The	Development	Team	is	responsible	for	this.	

19.	Make	commitments	to	management	about	how	much	
Development	Team	can	do	by	a	certain	date	
The	Product	Owner	measures	the	Development	Team’s	velocity,	and	
makes	forecasts	of	how	much	of	the	Product	Backlog	the	Development	
Team	can	complete	by	a	specified	date.	If	the	Product	Owner	makes	a	
hard-date	release	commitment,	the	Product	Owner	is	responsible	for	
including	the	necessary	scope	and	schedule	buffer	in	the	plan,	or	
making	the	tough	decisions	about	which	Product	Backlog	Items	to	de-
scope	or	delay	if	the	date	proves	unrealistic.	

20.	Be	responsible	for	the	Development	Team	meeting	the	
commitments	I’ve	made	to	management.	

	 19	

The	Product	Owner	is	responsible	for	making	decisions	about	what	to	
do	if	velocity	is	lower	than	anticipated	–	either	moving	the	release	
date,	removing	Product	Backlog	items,	or	simplifying	Product	Backlog	
items.	

21.	Do	weekly	status	update	report	for	management	
Not	needed	in	Scrum.	If	management	wants	to	know	how	the	project	is	
going,	they	ask	the	Product	Owner	for	the	Release	Burndown	chart.	

22.	Do	weekly	Development	Team	staff	meeting	
Not	needed	in	Scrum.	The	Development	Team	updates	each	other	
daily,	and	managers	can	get	an	update	on	the	Sprint	in	the	Sprint	
Review	Meeting.	

	

	 20	

PERFORMANCE APPRAISALS IN SCRUM

After	adopting	Scrum,	many	organizations	continue	doing	
performance	appraisals	using	their	traditional	methods	–	for	example,	
stack-ranking	employees,	or	“curve”-based	ratings.			

These	competition-based	approaches	might	be	effective	in	certain	job	
contexts	–	for	example,	within	sales	team–	but	within	software	teams	
they	undermine	the	teamwork	and	collaboration	that	are	the	
foundation	of	team	effectiveness.		It	is	not	uncommon	to	see	a	
Development	Team	shift	from	a	“We”	mindset	to	a	“Me	versus	You”	
mindset	in	the	month	or	two	leading	up	to	performance	appraisals,	
with	a	corresponding	decrease	in	overall	team	performance.		This	is	
particularly	unfortunately	since	the	goal	of	doing	these	appraisals	is	to	
improve	results.	

The	most	successful	organizations	evolve	their	approach	to	evaluating	
and	rewarding	employee	performance,	as	part	of	their	adoption	of	
Scrum.		The	goal	is	to	shift	the	evaluation	and	rewards	away	from	a	
competitive	model	and	towards	a	more	collaborative	one.			

One	example	is	the	approach	shown	below.		Fifty	percent	of	each	
employee’s	individual	performance	appraisal	is	based	on	the	team’s	
overall	performance.		The	other	fifty	percent	is	based	on	the	
employee’s	individual	performance;	half	of	that	rating	comes	from	the	
employee’s	manager,	and	the	other	half	from	ratings	given	by	team-
mates.	

This	approach	puts	a	strong	focus	on	the	overall	team	performance,	
and	on	recognizing	team	contribution,	as	opposed	to	encouraging	
competition	between	team-mates.	

	

Team’s	Overall
Performance
50%

Employee’s	Individual
Performance
50%

50%	based	on
Rating	from
Manager

50%	based	on
Rating	from
Team-mates

	 21	

SAMPLE JOB DESCRIPTION FOR A MANAGER IN A
SCRUM-BASED ORGANIZATION

§ Lead	the	recruitment	and	hiring	of	new	Development	Team-
members	(with	the	active	involvement	and	input	of	the	existing	
Development	Team-members)	

§ Provide	input	to	the	Product	Owner	on	the	product	strategy	
and	vision,	and	give	feedback	to	the	Product	Owner	on	the	
content	and	prioritization	of	the	Product	Backlog.	

§ Provide	support	and	assistance	to	Development	Teams	and	
their	ScrumMasters.	Be	prompt	and	proactive	in	helping	
remove	impediments	that	are	harming	Development	Teams’	
ability	to	be	effective.	

§ Actively	support	ScrumMasters’	efforts	to	protect	Development	
Teams	from	disturbance,	disruption,	or	outside	interference.	

§ Be	available	to	provide	advice	and	assistance	to	Development	
Teams	on	technical	difficulties	that	arise	in	the	course	of	doing	
their	work.	

§ Identify	issues	to	Development	Teams	that	they	might	
overlook,	such	as	scalability,	performance,	security,	etc.	

§ Provide	mentorship	and	career	development	advice	and	
guidance	to	Development	Team-members.	This	mentorship	
should	include	both	technical	mentorship,	as	well	as	soft-skills	
and	other	aspects	of	being	effective	and	successful	in	a	
development	organization.	

§ Plan	and	manage	skills	development	and	training	for	
Development	Team-members.	Think	carefully	about	areas	
where	their	skills	need	greatest	development,	or	where	the	
most	opportunity	for	improvement	exists;	work	with	the	
person	to	identify	appropriate	training;	and	obtain	budget	and	
time	allowance	to	complete	it.	

§ Stay	abreast	of	developments	in	the	tools	and	technologies	that	
Development	Teams	are	using.	Solicit	input	from	Development	
Teams	and	other	stakeholders	on	tools	and	technologies	that	
could	be	useful.	Spend	time	getting	hands-on	familiarity	with	
these	tools	and	technologies.	

§ Stay	up	to	date	on	industry	news.	Be	knowledgable	about	
developments	from	our	company,	our	competitors,	and	our	

	 22	

largest	customers,	including	financial	performance,	market	
share,	product	roadmap,	and	overall	business	strategy.	

§ Remove	Development	Team-members	are	not	able	to	perform	
well	within	a	given	Development	Team,	work	effectively	with	
their	fellow	Development	Team-members,	or	perform	work	at	
the	level	of	expertise	or	quality	required.	This	should	come	
only	after	coaching	and	training	has	failed	to	correct	the	under-
performance.	

§ Do	financial	planning	and	budgeting	for	Development	Teams,	
including	anticipating	future	people	requirements,	skills	
development	and	training	needs,	tools	and	technologies	
required,	hardware,	travel,	and	any	other	resources	that	people	
will	require.	

§ Provide	performance	feedback	and	complete	performance	
evaluations	for	Development	Team-members.	Informal	
performance	feedback	should	be	provided	on	a	frequent	basis,	
and	should	include	feedback	from	fellow	Development	Team-
members.	Feedback	should	be	focused	on	recognition	for	
achievement,	and	opportunities	for	growth.	
	

	 23	

RECOMMENDED BOOKS

The	Enterprise	and	Scrum	
Ken	Schwaber	

Essential	Scrum:	A	Practical	Guide	to	the	Most	Popular	Agile	Process	
Kennth	Rubin	

Conscious	Business:	How	to	Build	Value	Through	Values	
Fred	Kofman		

The	Fifth	Discipline:	The	Art	&	Practice	of	The	Learning	Organization	
Peter	M.	Senge	

Management	3.0:	Leading	Agile	Developers,	Developing	Agile	Leaders	
Jurgen	Appelo		

Agile	Retrospectives:	Making	Good	Teams	Great		
Esther	Derby	

Coaching	Agile	Teams:	A	Companion	for	ScrumMasters,	Agile	Coaches,	
and	Project	Managers	in	Transition	
Lyssa	Adkins	

	

